
Why learn Haskell?

Keegan McAllister

SIPB Cluedump

October 11, 2011

Keegan McAllister Why learn Haskell?

Composability

The central challenge of programming (Dijkstra, 2000):

How not to make a mess of it

It helps to build programs from composable parts

Combine in flexible yet well-defined ways

Haskell is a language uniquely suited to this goal

Keegan McAllister Why learn Haskell?

Functions

factorial 0 = 1

factorial n = n * factorial (n-1)

Whitespace for function application

f x not f(x)

Parentheses only for grouping

Keegan McAllister Why learn Haskell?

Lists

A list is either

the empty list [], or

a first element x and a remaining list xs, written (x:xs)

Use these patterns to build and to inspect lists

length [] = 0

length (x:xs) = 1 + length xs

Keegan McAllister Why learn Haskell?

Declarative programming

Describe results, not individual steps

-- merge two sorted lists

merge xs [] = xs

merge [] ys = ys

merge (x:xs) (y:ys)

| x < y = x : merge xs (y:ys)

| otherwise = y : merge (x:xs) ys

Keegan McAllister Why learn Haskell?

Equational reasoning

Functions on functions

map f [] = []

map f (x:xs) = f x : map f xs

(f . g) x = f (g x)

Reason by substituting equals for equals

map f (map g xs) ≡ map (f . g) xs

map f . map g ≡ map (f . g)

Keegan McAllister Why learn Haskell?

Lazy evaluation

Expressions aren’t evaluated until result is needed

-- two infinite lists

evens = 0 : map (+1) odds

odds = map (+1) evens

GHCi> take 16 evens

[0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30]

Keegan McAllister Why learn Haskell?

Laziness separates concerns: example 1

minimum = head . sort

sort ∈ O(n log n)
minimum ∈ O(n)

. . . for careful sort implementations

Keegan McAllister Why learn Haskell?

Laziness separates concerns: example 2

foldr f z [] = z

foldr f z (x:xs) = f x (foldr f z xs)

True || x = True

False || x = x

or = foldr (||) False

any p = or . map p

GHCi> any (> 7) [1..] -- an infinite list

True

Keegan McAllister Why learn Haskell?

Static types

Types exist at compile time; writing them is optional

not :: Bool -> Bool

map :: (a -> b) -> [a] -> [b]

map :: (a -> b) -> ([a] -> [b])

Types catch mistakes but stay out of your way otherwise

Keegan McAllister Why learn Haskell?

Algebraic data

Define and inspect data by enumerating cases

data Tree

= Leaf

| Node Int Tree Tree

depth :: Tree -> Int

depth Leaf = 0

depth (Node n x y)

= 1 + max (depth x) (depth y)

Keegan McAllister Why learn Haskell?

Pattern-matching is composable

Patterns can be nested

rotate :: Tree -> Tree

rotate (Node m (Node n x y) z)

= Node n x (Node m y z)

rotate t = t

Keegan McAllister Why learn Haskell?

Parametric polymorphism

data Tree t

= Leaf

| Node t (Tree t) (Tree t)

treeMap :: (a -> b) -> Tree a -> Tree b

Polymorphic type disallows hidden special cases

-- ok

treeMap f (Node v x y) = ...

-- error: not polymorphic!

treeMap f (Node [2,7] x y) = ...

Keegan McAllister Why learn Haskell?

Sharing immutable data

data Tree t

= Leaf

| Node t (Tree t) (Tree t)

insert x Leaf = Node x Leaf Leaf

insert x (Node y a b)

| x < y = Node y (insert x a) b

| otherwise = Node y a (insert x b)

New tree shares nodes with old

Great for lock-free concurrency

Keegan McAllister Why learn Haskell?

Embedded languages

Libraries can feel like specialized languages

tree :: Parser (Tree String)

tree = leaf <|> node where

leaf = Leaf <$ char ’.’

node = Node <$> some alphaNum <* char ’(’

<*> tree <*> tree <* char ’)’

GHCi> parseTest tree "x(y(..).)"

Node "x" (Node "y" Leaf Leaf) Leaf

Keegan McAllister Why learn Haskell?

Power of embedded languages

Embedded languages use Haskell features for free

many :: Parser a -> Parser [a]

satisfy :: (Char -> Bool) -> Parser Char

Grammar description for parser can use

functions

recursion

lists and other data structures

Keegan McAllister Why learn Haskell?

IO in Haskell

IO is an imperative language embedded in Haskell

-- IO action

getChar :: IO Char

-- function returning IO action

putChar :: Char -> IO ()

An IO action is an ordinary first-class value
An inert description of IO which could be performed

Evaluation 6= execution

Keegan McAllister Why learn Haskell?

Combining IO actions

Use result of one IO action to compute another

(>>=) :: IO a -> (a -> IO b) -> IO b

main =

getLine >>= (\name ->

putStrLn ("Hello " ++ name))

Special syntax is available:

main = do

name <- getLine

putStrLn ("Hello " ++ name)

Keegan McAllister Why learn Haskell?

First-class IO

Define your own control flow!

forever x = x >> forever x

for [] f = return ()

for (x:xs) f = do

f x

for xs f

for2 xs f = sequence_ (map f xs)

main = forever (for [1,2,3] print)

Keegan McAllister Why learn Haskell?

Example: scoped resources

bracket

:: IO a -- acquire

-> (a -> IO b) -- release

-> (a -> IO c) -- do work

-> IO c -- result

withFile

:: FilePath -> (Handle -> IO t) -> IO t

withFile name =

bracket (openFile name WriteMode) hClose

main = withFile "foo.txt" (\h -> hPrint h 3)

Keegan McAllister Why learn Haskell?

Concurrency

Lightweight threads

forkIO :: IO () -> IO ThreadId

Message channels

newChan :: IO (Chan a)

readChan :: Chan a -> IO a

writeChan :: Chan a -> a -> IO ()

Keegan McAllister Why learn Haskell?

Concurrency example

startLogger :: IO (String -> IO ())

startLogger = do

chan <- newChan

forkIO (forever

(readChan chan >>= putStrLn))

return (writeChan chan)

main :: IO ()

main = do

lg <- startLogger

lg "Hello , world!"

Chan is hidden; expose only what’s needed

Keegan McAllister Why learn Haskell?

Software transactional memory

How do threads coordinate access to shared state?

Locks are error-prone and don’t compose

Transactions provide an alternative

Build transactions the same way as IO actions

Atomic execution is guaranteed

Keegan McAllister Why learn Haskell?

Building transactions

Example: transfer funds between accounts

transfer amount sender receiver = do

-- read current balances

senderBal <- readTVar sender

receiverBal <- readTVar receiver

-- write new balances

writeTVar sender (senderBal - amount)

writeTVar receiver (receiverBal + amount)

Concurrent transfers would let you double-spend money!
Can’t happen because this is all one transaction

Keegan McAllister Why learn Haskell?

Composing transactions

We can combine transactions:

sale cost buyer seller = do

transfer 1 (goods seller) (goods buyer)

transfer cost (money buyer) (money seller)

Still a single transaction; still atomic

Keegan McAllister Why learn Haskell?

Running transactions

Run any transaction atomically

atomically :: STM a -> IO a

main = do

...

atomically (sale 3 alice bob)

...

Keegan McAllister Why learn Haskell?

Transaction guarantees

Transactions have a different type from IO actions

atomically :: STM a -> IO a

So transactions can’t

affect the outside world

run outside atomically

Lacking this property is why Microsoft’s transactions for C# failed

Keegan McAllister Why learn Haskell?

Transaction failure

What if the sender has insufficient funds?

transfer amount sender receiver = do

senderBal <- readTVar sender

when (senderBal < amount)

retry

...

Acts like immediate retry

Implementation is more efficient

Keegan McAllister Why learn Haskell?

Parallelism without concurrency

So Haskell supports a few approaches to threading

What about pure computation on multiple cores?

Shouldn’t need explicit threads at all

Keegan McAllister Why learn Haskell?

Pure parallelism

resS = map complexFunction bigInput

resP = parMap rseq complexFunction bigInput

We know resS equals resP

but resP might evaluate faster

Can place parallelism hints anywhere

without changing results

without fear of race conditions or deadlock

Keegan McAllister Why learn Haskell?

The real world

Haskell code looks nice. . .

but can we use it to solve real problems?

Keegan McAllister Why learn Haskell?

Commercial users

A niche language with many niches

Amgen∗: biotech simulations

Bluespec: hardware design tools

Eaton∗: EDSL for hard realtime vehicle systems

Ericsson: digital signal processing

Facebook∗: automated refactoring of PHP code

Galois∗: systems, crypto projects for NASA, DARPA, NSA

Google∗: managing virtual machine clusters

Janrain: single sign-on through social media

Lots of banks: ABN AMRO∗, Bank of America, Barclays∗,
Credit Suisse∗, Deutsche Bank∗, Standard Chartered

∗paper / talk / code available
Keegan McAllister Why learn Haskell?

Open-source applications in Haskell

xmonad: tiling window manager for X11

Fast and flexible

Great multi-monitor support

Configured in Haskell, with seamless recompile

pandoc: markup format converter

Markdown, HTML, LATEX, Docbook, OpenDocument, . . .

Syntax highlighting, math rendering

Used in making these slides

Keegan McAllister Why learn Haskell?

The Glorious Glasgow Haskell Compiler

GHC implements the Haskell language

with many extensions

GHC produces optimized native-code executables

directly or via LLVM

GHCi: interactive interpreter

GHC as a library: Haskell eval in your own app

Keegan McAllister Why learn Haskell?

GHC runtime system

One OS thread per CPU core

Haskell threads are scheduled preemptively

Spawn 100,000 threads on a modest system

Parallel generational garbage collector

All OS threads GC at the same time

Special support for transactions, mutable arrays, finalizers

Keegan McAllister Why learn Haskell?

High-performance concurrent IO

You use threads and simple blocking IO

GHC implements with event-based IO: select, epoll, etc.

Don’t turn your code inside-out!

Good performance with one thread per client:

10,000 HTTP / sec with 10,000 active clients∗

17,000 HTTP / sec with 10,000 idle clients

∗O’Sullivan and Tibell. “Scalable I/O Event Handling for GHC.” 2010 ACM
SIGPLAN Haskell Symposium, pp. 103-108.

Keegan McAllister Why learn Haskell?

C foreign function interface

Calling C from Haskell is easy:

foreign import ccall sqrtf :: Float -> Float

main = print (sqrtf 2.0)

Full-featured:

also call Haskell from C

work with pointers, structs, arrays

convert Haskell function ←→ C function pointer

Making a high-level API is still hard!

Keegan McAllister Why learn Haskell?

Rewrite rules

Libraries can include rules for the optimizer

{-# RULES "myrule"

forall f g xs.

map f (map g xs) = map (f . g) xs

#-}

Keegan McAllister Why learn Haskell?

Haskell tools

Besides compiling, we need to

run tests

benchmark and profile

generate documentation

manage library dependencies

package and distribute our code

Keegan McAllister Why learn Haskell?

QuickCheck library

sort :: [Int] -> [Int]

prop1 xs = sort (sort xs) == sort xs

prop2 xs = xs == sort xs

GHCi> quickCheck prop1

+++ OK, passed 100 tests.

GHCi> quickCheck prop2

*** Failed! Falsifiable (after 6 tests and 7 shrinks):

[1,0]

Test against properties or reference implementation

Keegan McAllister Why learn Haskell?

Test coverage: hpc

Keegan McAllister Why learn Haskell?

Benchmarking: Criterion

import Criterion.Main

main = defaultMain [bench "factor 720"

(whnf factor 720)]

estimating cost of a clock call...

mean is 88.16269 ns (43 iterations)

found 4 outliers among 43 samples (9.3%)

benchmarking factor 720

mean: 56.01964 ns, lb 55.67899 ns, ub 56.46515 ns,

ci 0.950

Keegan McAllister Why learn Haskell?

Criterion’s density estimation

Densities of execution times for "factor 720"
e
st

im
a
te

 o
f

p
ro

b
a
b

ili
ty

 d
e
n
si

ty

0

1.0e-2

2.0e-2

3.0e-2

4.0e-2

50.0 ns 55.0 ns 60.0 ns 65.0 ns
execution time

Keegan McAllister Why learn Haskell?

Time profiling

individual inherited

COST CENTRE %time %alloc %time %alloc

MAIN 0.0 0.0 100.0 100.0

CAF:main 0.0 0.0 0.0 0.0

CAF:main 0.0 0.0 98.6 97.6

main 44.4 30.7 98.6 97.6

keepNew 1.4 3.6 1.4 3.6

keepOld 4.2 3.6 4.2 3.6

diff 0.0 10.7 48.6 59.8

number 1.4 2.5 13.9 30.7

zipLS 12.5 28.2 12.5 28.2

solveLCS 0.0 0.0 34.7 18.4

longestIncreasing 0.0 0.0 0.0 0.0

unique 34.7 18.4 34.7 18.4

Keegan McAllister Why learn Haskell?

Heap profiling: hp2ps

mean +RTS -hy -p -K400M 333,347,139 bytes x seconds Tue Sep 6 17:40 2011

seconds0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

b
y
te

s

0M

50M

100M

150M

200M

250M

BLACKHOLE

Double

*

[]

Keegan McAllister Why learn Haskell?

Threadscope

Keegan McAllister Why learn Haskell?

Documentation: Haddock

Keegan McAllister Why learn Haskell?

Cabal

Cabal will

compile your code

generate a source tarball

handle a mixture of Haskell and C

track installed packages and dependencies

hyperlink documentation between packages

Keegan McAllister Why learn Haskell?

Cabal file

name: patience

version: 0.1.1

license: BSD3

synopsis: Patience diff algorithm

maintainer: Keegan McAllister

library

exposed-modules: Data.Algorithm.Patience

ghc-options: -Wall

build-depends:

base >= 3 && < 5

, containers >= 0.2

Keegan McAllister Why learn Haskell?

Using Cabal

patience-0.1.1$ cabal install

Resolving dependencies...

Building patience-0.1.1...

[1 of 1] Compiling Data.Algorithm.Patience

Registering patience-0.1.1...

Running Haddock for patience-0.1.1...

Installing library in

~/.cabal/lib/patience-0.1.1/ghc-7.0.4

Updating documentation index

~/.cabal/share/doc/index.html

Keegan McAllister Why learn Haskell?

Hackage: the Haskell package repository

http://hackage.haskell.org

Over 3,400 packages

Most have permissive license (BSD or MIT)

Dozens of uploads per day

Hyperlinked documentation on the Web

Cabal can download and install

Keegan McAllister Why learn Haskell?

Hoogle and Hayoo: search Hackage by type

Keegan McAllister Why learn Haskell?

Bad parts of the language

Standard Haskell changes slowly; extensions are

not fully specified

subject to change and deprecation

Some clear mistakes in the design

e.g. monomorphism restriction

Records and modules are simplistic

compare to OCaml

Ad-hoc overloading has annoying limitations

Keegan McAllister Why learn Haskell?

Trouble at runtime

Reasoning about performance is very hard

Magic optimizations are brittle

Lots of time is spent in garbage collection

other threads blocked

Hard to track down run-time errors

Keegan McAllister Why learn Haskell?

Library woes

Which of those 3,400 packages are usable?

Too much choice

Do your text type, parser lib, IO iterator fit together?

Standard library has gaps and avoidable flaws

Best practices are still evolving

Keegan McAllister Why learn Haskell?

Obstacles to learning

Up-front effort for long-term gain

un-learning old habits

Frustrating: easy things are hard

Many articles are confusing or plain wrong

“a monad is like a burrito”

Keegan McAllister Why learn Haskell?

Where to learn Haskell

Books (free online)

Learn You a Haskell For Great Good by Lipovača

Real World Haskell by O’Sullivan, Stewart, Goerzen

Real-time help from experts

Freenode IRC #haskell: 750 users

Stack Overflow: 4,000 questions asked

Reddit, blogs, mailing lists, HaskellWiki, academic papers, . . .

Keegan McAllister Why learn Haskell?

Try Haskell!

Keegan McAllister Why learn Haskell?

#haskell’s lambdabot

<kmc> @run fix ((0:) . scanl (+) 1)

<lambdabot> [0,1,1,2,3,5,8,13,21,34,55,89,144,233,...

<kmc> @pl \x -> h (f x) (g x)

<lambdabot> liftM2 h f g

<kmc> @djinn ((a, b) -> c) -> a -> b -> c

<lambdabot> f a b c = a (b, c)

<kmc> @quote few.dozen

<lambdabot> _pizza_ says: i think Haskell is

undoubtedly the world’s best programming

language for discovering the first few dozen

numbers in the Fibonacci sequence over IRC

Keegan McAllister Why learn Haskell?

Haskell Platform: batteries included

Haskell
Platform

GHC bundled with blessed tools and libraries

HTTP, CGI, OpenGL, regex, parsers, unit testing

Available for Windows, Mac OS X, Linux, FreeBSD

Packaged in Ubuntu, Debian, Fedora, Arch, Gentoo

http://haskell.org/platform

Keegan McAllister Why learn Haskell?

In conclusion. . .

Haskell lets you build software out of flexible parts which combine
in well-defined ways.

Start learning and get

new ideas right away

a practical tool later

Use those ideas in other languages, too

Keegan McAllister Why learn Haskell?

Questions?

Slides available at http://t0rch.org

Keegan McAllister Why learn Haskell?

